
AD-A132 6i1 LEARNING TO PROGRAM IN LISP(U) CARNEGIE-MELLON UNIV i/i
PITTSBURGH PR DEPT OF PSYCHOLOGY J R ANDERSON ET AL-
Bi SEP 83 TR-83-i-ONR N@0014-81-C-0335

VNCLSIFIEEG 92 N

I fllflffl~fflfllflfflO
EhhhhhE~hELa

-~.a --. .iZ. 'tt ~ .- ~.- . . - - .-- -3- . .3 . - - - .-. -

Wo.

111m .

4.o

111I25-

MIRCP.RSLTO TS HR
NAINLBREUO.TNARS 6-

7--

Learning to Program in LISP,

V) John R. Anderson
Robert Farrell

Ron Sauers
Department of Psychology
Carnegie-Mellon University

Pittsburgh, PA 15213

Approved for public release: distribution unlimited.
Reproduction in whole or in part is permitted for any purpose

of the United States government.

DTIC

SEP 2 C1 §33

C.. This research was supported by the Personnel and Training Research Programs,~Psychological Services Division, Office of Naval Research, under Contract
CNo.: N00014-81-C-0335, Contract Authority Identification Number,

I.,J NR No.: 157-465 to John Anderson.

83 09 19 021

Unclassified
SECURITY CLASSIFICATION -W THIS PAGE (When Date Entered) . _ _"__=___r_ _

PAGE READ INSTRUCTIONS
REPORt OJOCUMENTATION BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

R.. 83-1 ii -3
4. TITLE (md Subtitle) S. TYPE OF REPORT & PERIOO COVERED

Learning to Program in LISP Final Technical Reoort
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORta) 8. CONTRACT OR GRANT NUMBER(s)

John R. Anderson N00014-81-C-0335
Robert Farrell

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Psychology AREA A WORK UNIT NUMBERS
Carnegie-Mellon University NR 157-465
Pittsburgh, PA 15213

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

Personnel and Training Research Programs Se1.,i 1981
Office of Naval Research 13. NUMBER OF PAGES

A1riqrl la 79 52
14. MONITORING AGENCY NAME & AOORESS(If dilferent from Controlling Office) IS. SECURITY CLASS. (o this report)

unclassified
ISa. OECLASSIFICATION, DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DIST"RIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Is. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it nocessary and Identify by block number)

production systems computer simulation knowledge compilation retrieval
programming analogy proceduralization planning
LISP working memory composition
problem-solving cognitive skill problem decomposition
goal structures skill acquisition automatic programming

20. ABSTRACT (Continue on reverse side If necessary and identify bv block number)

We have gathered protocols of subjects in their first 30 hours of learning
LISP. The process by which subjects write LISP functions to meet problem
specifications has been modeled in a simulation program called GRAPES (Goal . *

Restricted Production System). The GRAPES system embodies the goal-restricted
architecture for production systems as specified in the ACT* theory (Anderson,
1983). We compare our simulation to human protocols on a number of problems.
GRAPES simulates the top-down, depth-first flow of control exhibited by subject

DD IPI 1473 EDITION OF I NOV 65 IS OBSOLETE unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered)

%I

SECURITY CLASSIPCATION Op THIS PAGO1.Cwf- Daa Engered)

and produces code very similar to subject code. Special attention is given
to modeling student solutions by analogy, how students learn from doing, and
how failures of working memory affect the course of problem solving. Of
major concern is the process by which GRAPES compiles operators in solving
one problem to facilitate the solution of later problems.

SD

,-

-C

sECuI|TY CLA$SSiICAr/ION OP~ THIS PAO~rWPrh.fl Data En'tered)

1 !

Abstract

We have gathered protocols of subjects in their first 30 hours of learning LISP. The processes by which

subjects write LISP functions to meet problcm specifications has been modeled in a simulation program

called GRAPES(Goal Restricted Production System). The GRAPES system embodies the goal-restricted

architecture for production systems as specified in the ACT* theory. (Anderson, 1983). We compare our

simulation to human protocols on a number of problems. GRAPES simulates the top-down, depth-first flow

of control exhibited by subjects and produces code very similar to subject code. Special attention is given to

modeling student solutions by analogy, how students learn from doing, and how failures of working memory

affect the course of problem solving. Of major concern is the process by which GRAPES compiles operators

in solving one problem to facilitate the solution of later problems.

- L

A ' -

1*;

,." %%

2

I nt roduction

There are a number of reasons for being interested in how people learn to program. For one thing, it is

an excellent example of the acquisition of a complex cognitive skill. It gets to the heart of many of the deep

epistemological issues that haunt cognitive science. Particularly in the case of a language like LISP and in the

case of subjects with no prior computer experience, we are looking at skill acquisition with relatively little

relevant prior knowledge. It is almost as close to a situation of a tabula rasa as we are going to find in an

adult. Also, in contrast to domains like natural language or perhaps even mathematics, it is extremely

implausible to argue that we have evolved a special faculty for this skill (e.g., Chomsky, 1980). In studying the

acquisition of programming skills, we are looking at an instance of learning by general-purpose mechanisms.

Despite the relative paucity of prior knowledge and prior specialization, people can become quite proficient

programmers. So the domain offers a testimony to the power of these general-purpose learning mechanisms.

Two of our three subjects also had no prior programming experience. Thus, we are looking at a

particularly pure case of novel learning. However, the behavior we observe in LISP also shows up in learning

other skills like geometry and physics and we feel our theoretical conclusions do generalize to other domains.

It is also the case that learning to program is going to be an increasingly important goal in our society.

Thus, understanding its acquisition will have enormous educational impact. The issue of training novel,

complex, and technical skills is a major one for our "high-tech" society with its need to retrain a large fraction

of the work force. This retraining will not always be in programming, but in studying programming we are

addressing issues important to many technical skills.

This paper reports research relevant to four major issues-how the problem solving involved in

programming is organized, how the knowledge given. in instruction is initially used to guide programming,

how this knowledge becomes compiled so it can apply smoothly, and how working memory capacity limits

the ability to program. While these are interesting questions in their own right, we are particularly interested

in these questions because the), are key to the ACT* theory of acquisition of cognitive skills (Anderson, 1982,

1983). Consonant with ACT* we will argue for four major conclusions:

• ,' ' '." " "._ , . " .- . . .- ,:':?.:-7 i:.. " . . .- : .

3

(1) The problem-solving is organized hierarchically according to a set of goals and subgoals.

(2) The problem solving is largely guided at first by structural analogy to concrete cases. ,

(3) The ACT* processes of composition and proceduralization convert this knowledge into procedures

specific to programming.

(4) Working memory impacts on behavior by affecting the probability of successfully executing the

analogy and programming procedures.

The Data Base

We have looked extensively at the first 30 hours of novice programming behavior of three subjects (SS,

WC, and BR). SS was an undergraduate with no prior programming experience, BR was a psychology BA

also without any programming experience, WC was a college professor with some FORTRAN experience. In

these protocols, subjects studied a text on LISP- SS studied Siklossy (1976), WC studied Winston (1977), and

BR studied Winston & Horn (1981). We recorded their verbal protocols, kept their paperwork, and kept a

record of their terminal interactions. The individual sessions varied from 45 minutes to two and a half hours,

depending on what seemed to be natural units and natural breaking points. Approximately one quarter of the

session time was spent reading and discussing the text; the other three-quarters of the time was spent doing

various exercises. The subjects worked with an experimenter who tried to do as little teaching as possible and

let the student learn from the text. The main responsibility of the experimenter was to query the subjects

about what they were thinking, why they tried various solutions, etc. However, if the subject had a serious

misunderstanding or was lost in problem, the experimenter would intervene with tutorial assistance.

We feel that we have a good record of the learning that was occurring in these sessions. Subjects were

instructed not to think about LISP whcn they were not in the experimental session. They were also not

permitted to keep the textbook between sessions.

While the 30 hour protocols from these subjects has been the major source of data for theory

construction, we have also looked at protocols from these subjects much later, after they had continued their

I,

-* * * * * * * . . .

T.I

4

LISP education; we looked at protocols from relatively advanced LISP programmers. In addition, we have

assigned various learning problcms to a large class learning LISP. While we cannot get any information about

the rcal-time problem-solving from the class, the data does provide information about the distribution of final

solutions. This provides one basis for judging thc representativeness of the solutions we see from our three

subjects.

The GRAPES Simulation

We developed GRAPES (Goal-Restricted Production System) to model how subjects write LISP

functions2 and how subjects learn from their problem-solving episodes. GRAPES is a simulation of certain

aspects of the ACT* theory and as such takes the form of a production system. Each production in GRAPES

has a condition which specifies a particular programming goal and various problem specifications. The action

of the production can be to embellish the problem specification, to write or change LISP code, or to set new

subgoals. A representative example of a production 3 that a pre-novice might have:

.R1: IF the goal is to write a structure
and there is a template for writing the structure

THEN set a goal to map that template to the current case.

RI might be invoked in a non-programming context such as when one uses another person's income tax form

as a template to guide how to fill out his own. Productions like R1 serve as a basis for subjects' initial

performance in LISP. A production that anovice might have after a few hours of learning is:

R2: IF the goal is to add List1 and List2
THEN write (APPEND Listl List2)

This production recognizes the applicability of the basic LISP function. With experience, subjects become

more and more discriminate about when to apply LISP functions and more articulate about how to apply

functions. A rule that an expert might have is:

R3: IF the goal is to check that a recursive call to a function will
terminate and the recursive call is in the context of a MAP function

THEN set as a subgoal to establish that the list provided to the MAP
function will always become NIL after some number of rccursive calls

All programs in LISP take the form of functions that calculate various input-output relations. These

functions can call other functions or thcmselves recursively. A programming problem is solved in GRAPES

'4

* e , , . ,' : - ' ' ' : ' " " . . - " " .' . '' ",, ', ,-" " • ". * " " . - .• •*

5

by decomposing an initial goal of writing a function into subgoals and dividing thcse subgoals into others,

etc., until goals are reached which correspond to things which can be directly written. The composition of

goals into subgoals constitutes the AND-level of a goal tree; altcrnative ways of decomposing a goal constitute

the OR level of the goal tree. The details of the GRAPES production system are described in Sauers and

Farrell (1982). The architecture differs from other production systems (e.g. Anderson, 1976; Newell, 1973),

primarily in the way it treats goals. At any point in time there is a single goal being focused upon and only

productions relevant to that goal may apply. In this feature, GRAPES is like ACT* (Anderson, 1983) and

other recent theories (Card, Moran & Newell,1983; Brown and Van Lehn, 1980). More generally, it is the
I

case that GRAPES has a subset of the features contained in ACT*

The Transition to Behavior: The FIRST Problem

One of our consistent observations from the protocols is that subjects are not able to read instructions,

of even modest complexity, and then generate, without error, the behavior instructed. This is not surprising

given the ACT* theory. According to that theory, instructions are stored initially in a declarative form while

behavior requires procedures which are represented as productions. Instructions cannot directly set up

procedures to perform the skill. To get behavior, general interpretive productions must convert this

knowledge into behavior. Many of the problems arise because of the indirection through these interpretive

productions.

One of the problem-solving episodes of BR is typical of the difficulties people have in making the

transition from instruction to experience. She had read the instruction on pages 33-37 of Winston and Horn

on function definition and had turned to the first problem on page 37 to define the function FIRST which

returned the first element of a ist..

She extracted virtually nothing from the text instruction. What she did extract was a template for how

to write a function definition:

(DEFUN (function name>
(<parameter 1> <parameter 2>...<parameter n)
<process description))

Winston and Horn assert "anglc brackets delineate descriptions of things". She also studied three examples

* *S**q"m •II)* •J' o 'o'bo "*-"•x , . - ,-. ,

6

of function definitions to which she referred while trying to write the function FIRST. One of these functions

converted fahrenheit to centigrade:
(DEFUN F-TO-C (TEMP)

(QUOTIENT (DIFFERENCE TEMP 32) 1.8))

The second exchanged the first two members of a list

(DEFUN EXCHANGE (PAIR)
(LIST (CADR PAIR) (CAR PAIR)))

The third returned the percentage by which the second argument is larger than the first:

(DEFUN INCREASE (X,Y)
(QUOTIENT (TIMES 100.0 (DIFFERENCE Y X))X))

These are all referred to in BR's protocol which is given in Appendix A.

The one other relevant thing BR knew was the function CAR and how to use it when interacting with

the monitor in LISP. CAR returns the first element of the list which is its argument. She knew, for instance,

if she types (CAR '(A B C)), the monitor would return the answer A. Thus, this problem is really an exercise

in using the syntax of function definition rather than an exercise in defining a novel function.

FIRST: The Protocol

Because raw protocols such as Appendix A are very complex and full of irrelevant detail, we have taken

to simulating what we call protocol schematics. These are our intuitive characterizations of the essential

features of the protocol, omitting many of the digressions. Table 1 provides a schematic protocol for the

complete protocol given in Appendix A.

Insert Table 1 about here

There are two features of this protocol which are striking at the surface. First, as already noted, the

subject makes very little use of the written instruction. She relies on the template for a LISP definition and

the concrcte examples. We use the term structural analogy to refer to the process by which subjects map such

structures into new function definitions.

Second, at the end of the protocol, BR defined a function, SECOND, that returns the second clement of

a list. The striking feature of this episode is how much more rapidly the subject writes the definition for

- - ----,

* .k

-- l . .. - . _

7

SECOND than for FIRST. The subject does not have to resort to structural analogy and does not have

difficulty with either feature that caused problems for FIRST- the specification of the parameter list or th,.

specification of the LISTI argument within the process specification. The only thing that is causing the

subject any difficulty in SECOND is in deciding how to compose the primitive LISP functions CAR and

CDR together 4. The single experience with FIRST seems sufficient for her to compile rules about how to

deal with many aspects of the syntax of function definition.

FIRST: The Simulation

We created a production system in GRAPES that would simulate this protocol. The only productions

we required for this simulation were ones to do structural analogy and ones that could use the LISP functions

CAR and CDR at the top level.5 The first type of productions represent a general prior skill evoked in many

contexts (for instance, in filling out income tax forms). The second type was acquired from work with earlier

chapters in Winston and Horn.

Figure 1 illustrates the goal tree generated in simulating this example. Each box in Figure I represents a

goal and each arrow emanating from the box represents a GRAPES production trying to achieve the goal. If

the production has subgoals, it is connected to goal boxes below. The simulation starts with the goal of

writing the function and chooses as its method to use the template for function definition as a model. We

- refer to this as mapping the template. The structural analogy productions respond to the goal of mapping the

template by mapping the components DEFUN and (function name> in the template. These productions

wrote out "(DEFUN FIRST" without difficulty. This gets us through line 3 of the schematic protocol in

Table 1.

Insert Figure 1 about here
%o.....

Like our subject. GRAPES was not able to directly write out the parameter part of the function

template because GRAPES did not know what a parameter was. In cases like this. GRAPES' analogy

productions will r-sort to a co crete example. The concrete example rctricvcd by GRAPES is the definition

of F-TO-C giver .- j, -r.. ic subject in lines 5 and 6 reviews two examples in Winston and Horn- F-TO-C
-4'

47

8

and EXCHANGE. In both cases she notes the single argument which was theparameter. GRAPES solved

the analogy: X is to F-TO-C as the parameter list (i.e., (<parameter 1><paramcter 2>...<parameter n>)) is to

the abstract template, and retricved (TEMP) as the value for X. Thus, it decided (TEMP) was serving the

* parameter role in F-TO-C. Then it solved the analogy X is to FIRST as (TEMP) is to F-TO-C and

*' determined the value for X was (LIST1) which it put into the function definition. That is, GRAPES decided

(LIST1) served the same role in the function it was defining that (TEMP) was serving in F-TO-C. We infer

that this is what the subject was doing in line 7 of the schematic protocol.

Then GRAPES turned to trying to map (process specification> from the template. Being unable to

S.-directly interpret what is meant by <process specification>, it looked to its concrete example F-TO-C to see

that the LISP code which filled this slot performed the function operations. By analogy, GRAPES set its goal

to write code that would perform the operations required by FIRST. The subject at this point (line 8) looked

to a different example, INCREASE, for the same purpose of analogy. A GRAPES production for using CAR

at the top level applied next (corresponding to line 9 of the protocol), but there was no production to specify

how to write the argument to the CAR in the context of defining a function. GRAPES and the subject know

that CAR will operate on LISTi, but they do not know the syntax for specifying LIST1. GRAPES again

:* turns to its concrete example, F-TO-C and solves the analogy (CAR ARG) is to (QUOTIENT X) and

retrieves (DIFFERENCE TEMP 32) as the value of X which is the first argument to QUOTIENT. It then

solves the analogy problem of what it must do to LIST1 to make it like (DIFFERENCE TEMP 32) and

decidcs it should embed LISTI in parentheses. Similar to GRAPES, the subject on line 10 looks at a function

EXCHANGE which has the same argument structure as F-TO-C. We assume she ii,,kcs the same erroneous

analogy because she writes (LIST1) on line 11. The first argument to QUOTIENT in F-TO-C is embedded in

parentheses (as is the first argument to LIST in EXCHANGE) because a function, DIFFERENCE, must be

called to calculate the argument for QUOTIENT whereas no embedded function call is required for the

argument to CAR in the FIRST example.

There arc two things to note at this point. First. the subject had read the information in the text that

could have informed her to write LISTI without parentheses, but this had no impact on her behavior.

-- '.-.. ."--"-.--- . .----- --- - -. *

Second, on previous occasions she had correctly specified variable arguments when evaluating functions at

the top-level. Eventually, the tutor used this second fact, that the subject could do it correctly at the top level,

to guide the subject to a correct solution. Both of these observations illustrate the relative isolation of

knowledge. That is, knowledge studied or used in one context is not available in another context.

When the subject tries her function definition, an error is generated (line 14). GRAPES received the

same error message when it tried out the same function definition that it generated. The error occurred

because LISP treats the first thing inside a parenthesized expression to be evaluated as a function and there is

no function corresponding to LIST1. GRAPES associated this error with the failure to correctly specify the

argument to CAR. On previous occasions BR had encountered the same error at the top level typing in

commands like (CAR (A)) where the argument (A),to CAR is to be taken literally rather than evaluated.

Always in the past she had repaired these errors by quoting the argument. This is done by preceding the

argument with a single quote, i.e. (CAR '(A)). We assume that both the subject and GRAPES have compiled

from previous experience a rule that the way to repress this error is by using quote, which stops LISP from

evaluating. Thus, both GRAPES and the subject generate the new function definition as it is given in line 15

of Table 1.

When this new function is tried on an example, LISP returns the CAR of '(LIST1) which is

LIST1- rather than the first element of the value of LIST1. It is at this point (lines 16 and 17) that the tutor

intervenes and reminds the subject of how she would solve the problem at the top level. At the top level, the

student would have used (CAR LISTI) rather than (CAR (LIST1)) or (CAR(LIST1)). We simulated this

intervention in GRAPES by refocusing it to the code-first-relationship goal in Figure 1, and putting (CAR

LIST1) as a top-level example in working memory. Then GRAPES, as the subject, maps this code to its

current function definition and comes up with the correct code.

FIRST: Knowledge Compilation

After finally solving this problem, GRAPES formed two operators which aided its solution of the

second problem. These operators summarized much of the problem solving that took place.

P1: IF the goal is to write a function of one variable

10 9

THEN write (DEFUN function (variable)
and set as a subgoal to code the relation calculated by

this function
and then write).

P2: IF the goal is to code an argument
and that argument corresponds to a variable of the function

THEN write the variable name.

We have encircled in Figure 1 the portions of the goal tree that are summarized by each of these productions.

The first production captures the top level syntax of a function call while the second summarized the search

involved in finding out how to specify a variable argument to a function. With these productions, GRAPES

was able to write the function SECOND much easier, as was the subject.

We use knowledge compilation to refer to the process by which GRAPES forms such productions. Later

in this paper we will describe the mechanisms underlying compilation in some detail; however, the examples

above illustrate two important properties of compilation. First, in forming P1 it must be able to recognize

which aspects of the process are variable and must be left as open subgoals. In forming P2, it must be able to

recognize which parts of the goal tree were incorrect paths and which parts were critical to the final solution.

FIRST: Conclusions

There are a number of conclusions that we draw from BR's protocol and the GRAPES simulation. The

first is the importance of structural analogy to bridging the gap between current knowledge and the needed

behavior. We see two sources for the structure from which the analogy is being made. One is templates

provided in the text and worked-out problems. The other is structures that the subject can generate -for

instance, the subject generated (CAR LIST1) as a top-level solution and then used this in her function

definition.

Bott (1978) and Rumelhart & Norman(1981) have also stressed the importance of analogy in early

Icarning. In their situation, subjects were using analogy to extra-domain experiences. One feature of LISP is

that there are very few relevant analogies to other domains. Therefore, the analogy process must use

examples from within LISP.

11

A second conclusion concerns the hierarchical structure of the problem-solving episode as illustrated in

Figure 1. Note that the goals in this tree are expanded depth-first, left-to-right (this mode of expansion is

clearer in the next examples which involve "bushier" goal trees). Jeffries, Turner, Atwood and Poison (1981)

also note this hierarchical, top-down, structure in the programming bchavior of experts-although their

subjects use breadth-first expansion in correspondence with the edicts of structured programming.

The third conclusion is the importance of knowledge compilation in extracting new production rules

from an example problem. These rules streamline the solution of later problems. As the protocol shows, the

learning can be on the basis of a single example. It needs to be stressed that the lessons of this example

"stuck" which is to say, BR did not have, on later days, the same difficulty with the basic syntax of function

definition nor argument specification. It should also be stressed that compilation depends critically on the

structure of the goal tree being compiled.6 That is, the structure of the goal tree identifies what parts of the

problcm-solving episode belong together and what can be collapsed into a single rule.

In these three features- structural analogy, hierarchical goal trees, and knowledge compilation-we

have one complete solution to the issue of how the subject is able to make the transition to a new cognitive

behavior. As such, they constitute a major conclusion of this paper.

Dealing With Gaps in Knowledge: The ONETWO Problem

We will provide a scccnd example to help reinforce the conclusions from the first. This comes from the

subject, SS, who was slightly more advanced at this point in her protocol. She had written the functions

FIRST, SECOND, and THIRD. Thus, she had already learned the basics of function definition. She was

then given a problem, ONETWO, that exposed some of the gaps in her knowledge. Thus, in this protocol, we

will see how a subject deals with gaps in an existing procedure. This protocol is considerably more elaborate

than the first. Whereas BR's protocol spanned a little'less than half an hour, this protocol spanned about an

hour. Rather than presenting it in its entirety, we have simply providcd the protocol schematics in Table 2.

Insert Table 2 about here

"'The ONETWO problem required the subject to write a function which would take a list as an argument

i ° " °, .. °. - . * .°. . .o-. •o - . ,. _ - • " •.

* .-- -%U

12

and return a new list consisting of the first two elements of the argument list- e.g., (ONETWO '(A B C)) =

(A B). The LISP functions that the subject knew at this time included CONS but the subject had not yet

learned about LIST. CONS takes two arguments and inserts its first argument in the list that is its second

argument, eg. (CONS 'A '(B C)) = (A B C). Although SS had never used CONS in a function definition she

had a fair amount of experience with it at the top level of LISP when evaluating expressions such as the

example above. She also had experience with one slightly esoteric fact which proved critical to the solution of

the problem. If one used CONS with the second argument NIL, one puts the first argument in a list, eg.

(CONS 'A NIL) = (A). This is because NIL is equivalent to an empty list, eg. NIL =

ONETWO: An Initial Attempt

Initially, the subject could not think of a plan for defining ONETWO, so the experimenter suggested

writing a simpler function, ADDTWO, which would take two arguments and make a list out of them. SS was

able to plan out a solution to ADDTWO much more easily. It is interesting to speculate why ADDTWO was

more tractable than ONETWO. As we will see, the output specification and the basic solution did not change

in going from ONETWO to ADDTWO. However, by reducing the complexity of the task by one level, the

burden on the subject's working memory was reduced enough so that she was able to match rule conditions

more easily.

Figures 2 - 7 illustrate the simulation's attempts to solve ONETWO. Given the close correspondence

between the simulation and SS's protocol, we infer that these f-gures also describe the goal structures that

were guiding her problem solutions.

Insert Figure 2 about here

Figure 2 illustrates the first work that was done on the ADDTWO subproblem. The first operator sets

the subgoals of coding the function and checking(tsting) the code. Unable to code the solution directly,

GRAPES sets subgoals to come up with concrete examples of the input to ADDTIWO and what its output

should be, to find some code that could be used at the top lecel that would convert the concrete input into the

concrete output, to check this code, and then to map this code into an abstract function definition. The inputs

13

SS chose to pass to ADDTWO were (A B) and (C D). Why she chose list arguments we are unsure. The

result she wanted for these inputs was ((A B) (C D)). We constrained the GRAPES simulation to choose the

same example.

Figure 3 illustrates the simulation of the process by which she decided what top-level code would mimic

the performance of ADDTWO. After deciding on the example, she went through an episode where she

explicitly reviewed the definition of all the functions she knew, searching for an appropriate one. She selected

CONS, commenting that ADDTWO "is sort of like CONS except in CONS the first argument is any

S-expression and the second argument is a list". We represented the definition of CONS in GRAPES as

The first argument of CONS is any S-expression and tie second argument is a list. Its result is a
list. The first element of the resulting list is the first argument. The rest of the result consists of
the second argument.

She and GRAPES chose CONS because they wanted a list and CONS makes lists. Having selected CONS,

the subgoals were now to determine what arguments to pass to CONS in order to get the intended result.

Insert Figure 3 about here

The critical piece of information in selecting the first argument is the definition statement The first

element of the result is thefirst argument. GRAPES interfaces this with the desired result, ((A B) (C D)), to

determine that the correct argument should be (A B). Next, SS and GRAPES turn to the second argument.

The appropriate part of this definition is The rest of the result consists of the second argument. Matching this

would retrieve ((C D)) as the second argument. However, our subject retrieved (C D). We assume that the

semantic features of consists were partially lost and this statement became The rest of the result contains the

second argument. We manipulated GRAPES' working memory so that it would produce this error.' The

subject and GRAPES mentally simulated what the outcome would be of the code (CONS '(A B) '(C D)).

This involved retrieving the definition of CONS again. As evidence that her definition of CONS was not in

error, she correctly determined that ((A B) C D) would result as an ansvker. On a few occasions in the past, SS

had incorrectly used CONS at the top-level in just this way--having one less parenthesis around the second

argument. Therefore, we assume she had compiled a rule to repair this which embedded the second

14

argument to CONS in an extra list. By applying this rule, she and GRAPES recover from their error and

make up the concrete example (CONS '(A B) '((C D))).

To summarize, at this point the subject had actually created some LISP code which could be typed into

the top level of LISP and was going to use the structure of this code to guide the creation of an abstract LISP

function. This will be done by structural analogy or mapping. This mapping proceeds in basically the same

way as the mapping of the function definition template by subject BR.

ONETWO: The Mapping

..........-------------. -

Insert Figure 4 about here
-------------- - -----°°°

Figure 4 illustrates the simulation of SS's initial attempt to map from the concrete code, (CONS '(A B)

'(C D)), to an abstract LISP function definition. GRAPES starts in that figure with the goal MAP TO

ABSTRACT: First she maps CONS in the concrete code into CONS in the LISP function. At this point the

structure of the function is:8

(defun addtwo (one two)
(cons <> (.>))

The remaining task is to map the two concrete arguments into abstract arguments. She first focuses on

mapping (A B). The following rule, called MAP-FIND, applies:

IF the goal is to map an expression E into a domain D
and E contains a term T
and T corresponds to a argument A in domain D

THEN replace T in E by A

So, in this case she is trying to map the expression (A B) to the domain of the function definition where the

argument ONE in the function definition corresponds to the tenn (A B)-in this case the term is the whole

expression. Therefore, after replacing the argument for the term, the expression becomes simply ONE. This

same rule applies to map the second concrete expression ((C D)). In this case the argument TWO corresponds

to the term (C D) and the expression after substitution is (TWO). Note this rule has mapped the first concrete

expression into a correct definition expression but has mapped the second concrete expression into an

incorrect definition expression. The function definition at this point is:

". ° ° o " ,. • .° ' " ' . ° " .° .- ° . ° " " . . ° , . " . • o . " " •

15

(defun addtwo (one two)
(cons one (two)))

Insert Figure 5 about here

Figure 5 illustrates some of the subsequent evolution of this definition. The coding of ADDTWO had

the brother goal of checking that code. Both SS and GRAPES called the LISP interpreter to try the code with

the arguments (A B) and (C D)--i.e., both evaluated (ADDTWO '(A B) '(C D)). Both received the same error

message '"TWO undefined function object." This corresponds to an error that SS had encountered a few

times previously in her problcm solving. In previous occasions, the cause had been failure to quote an

argument. Therefore, we assumed that she had compiled an operator that used quote to stop evaluation.9

When this operator applied, her LISP code became

(defun addtwo (one two)
(cons one '(two)))

Again, she tried the code. This time it returned the result ((A B) TWO). Comparing this with ler desired

result the problem was localized to the second argument given to CONS; she and GRAPES went back to

retrying the goal of mapping ((C D)).

---------------------. -4

Insert Figure 6 about here

Figure 6 illustrates the simulation of this mapping. Having returned to this goal, the previous MAP-

FIND operator will not apply again. Therefore, a default rule applies which crcates a new subgoal of coding a

list consisting of a single argument. 10 As in the case of coding the full ADDTWO problem, GRAPES falls

back on the plan of making up a concrete example, coding it, checking the code, and then mapping the code

into an abstract code for the function. The previous concrete example of ((C D)) is used. Again, CONS is

chosen because it makes lists and again its definition is used to determine the correct arguments. This time

the definition is correctly used and GRAPES plans the concrete code as (CONS '(C D) NIL).

After chccking this code, GRAPES turns to the goal of mapping the concrete codc to the LISP function.

The process of performing this mapping is quite analogous to tie original mapping in Figure 5. Again,

16

CONS is mapped into CONS. The same MAP-FIND operator as before maps (C D) into TWO. An operator
for special LISP symbols, like NIL, maps NIL onto itself. So, the final successful code becomes:

(defun addtwo (one two)
(cons one (cons two nil)))

One interesting feature of this example is that SS is able to find her way eventually tc the correct

function without ever correcting the MAP-FIND opcrator, which will erroneously apply whenever it is given

a non-atomic data structure. Later protocols by SS indicated she still had the erroneous MAP-FIND

operator. An examination of buggy functions submitted by students given class exercises suggests that this is

a frequent bug among LISP novices.

ONETWO: Return to the Main Function

Figure 7 illustrates the behavior of the simulation and the subject when they returned to the original

ONETWO problem. The code they generated is given below:

(defun onetwo (list)
:-" (cons (first list)

(cons (second list) nil)))

Whereas the subject had taken an hour to code ADDTWO, she only took ten minutes to solve ONETWO and

most of that time was spent confirming what the functions FIRST and SECOND did. ONETWO is solved by

the same method that ADDTWO is solved, but without any rehearsal of the ADDTWO method, nor any of

the use of examples that was such a large part of the ADDTWO solution. Our assumption is that operators

were com * 9 A TVO problem that summarized the planning steps and these operators

facilitated solution of the ONETWO problem" "

Insert Figure 7 about here

One of the operators that GRAPES compiled summarizes the problem solution illustrated in Figure 6.

In creating the operator, GRAPES must distill those aspects critical to the solution. The goal in Figure 6 was

to create a list of a single element and this was cvenually achievcd by the action of CONSing that element

with NIL. Most of the intermediate results in Figure 6 were not part of this final solution and can be deleted

in the compiled production. We will shortly discuss how compilation achieves this. The summary operator

7T.,

17

built is:

IF the goal is to code a list consisting of one argument
THEN CONS that argument with NIL

and set as a subgoal to code that argument

Similarly, an operator is compiled to correspond to the outer CONS in the ADDTWO function. It has the

form:

IF the goal is to code a list consisting of argumcntl and argument2
THEN CONS argumentl into a list consisting of argument2

and set as subgoals to code argumentl
and to code a list consisting of argument2

Many other operators are compiled which are less useful. These other operators are not harmful, they are just

too larte or too specific to apply in future situations.

ONETWO: Summary

This examination of ONETWO reinforces some of the conclusions from the first protocol and

simulation. Again we see the use of structural analogy. In this case the subject did not take her analog from

the text but rather generated a concrete example of LISP code at the top level that could serve as an analog.

Second, the hierarchical structure of the problem-solving is even clearer in this simulation because of its

greater complexity. Third, we see the importance of knowledge compilation in building new operators that

will summarize the lessons learned from one problem-solving episode. We see one instance of an additional

phenomenon that will loom larger in the third and forthcoming simulation and protocol. This is the episode

where the subject temporarily forgot the definition of CONS. Such memory failures can become a dominant

feature of some problem-solving episodes.

Further Discussion of Compilation

-" As discussed in Anderson (1982) there arc two components to compilation- proceduralization and

composition. Proceduralization refers to the creation of specific productions that eliminate retrieval of

information from long-term memory by building that information into the rule. Composition refers to the

creation of more efficient productions that take the place of several productions. Both components were

involved when compiling the operators in the ONETwO example, but there are other circumstances where

the two might operate singly.

* % --• . . * " . . - _ . . ._ - - . . .

%' *.* *. .%
° %

4 "•="- . " - . -. " """" ' """ ""
°

- - "" " -

,,.-.

18

Procedu ralization

Proceduralizaion can be illustrated in its pure form by the following example: in GRAPES there is a

production that will retrieve function definitions from long-term memory and apply them:

IF the goal is to code a relation defined on an argument
and there is a LISP function that codes this relation

THEN use this function with the argument
and set as a subgoal to code the argument

In this production, relation and function are variables which allow the production to match different data.

The second line of the condition might match, for instance, "CAR codes the first member of a list." If this

rule is proceduralized to eliminate the retrieval of the CAR definition, it becomes

IF the goal is to code the first member of a list
THEN use CAR of the list

and set as a subgoal to code the list

This is achieved by deleting the second clause in the first production that required long term memory

retrieval. In addition, the rest of the production is made specific to the relation first element and the function

CAR. Now a production has been created which can directly recognize the application of CAR. This will

result in a reduction in the amount of long-term memory information that needs to be maintained in working

memory.

Composition

As an example of pure composition, suppose one wanted to add the first member of List1 to List2.

Then the following two operators would apply in sequence:

IF the goal is to add an element to a list
THEN use CONS on the element and the list

and set as subgoals to code the element
and to code the list

IF the goal is code the first member of a list
"'-' THEN use CAR on the list

and set as a subgoal to code the list

The first rule above would apply binding an element to "the first member of Listl" and a list to "List2". The

second production would apply binding a list to "Listl". A simple case of composition would involve

combining these two productions together to produce

IF the goal is to add the first member of one list to another list

9

19

THEN CONS the CAR of the first list to the second list
and set as subgoals to code the first list
and to code the second list

Such composition would collapse repeated sequences of coding operations to create macro-operators. The

result would be a speed-up in coding. The technical issues of how to combine productions together are fairly

straight forward and are discussed in Anderson (1983) and Neves & Anderson (1981). A major issue concerns

what productions to compose together. The above example is a fairly simple case of collapsing two levels of a

goal tree into one. However, in some cases such as when Figure 6 was collapsed into a single production

many productions are collapsed. GRAPES determines what productions to collapse by inspecting the goal

tree. There are two types of goals for purposes of composition: inherent goals and planning goals. Inherent

goals are intrinsic parts of the programming task. For current purposes inherent goals are all variants of

writing code. Thc important feature of inherent goals is that, in achieving them, one achieves part of the

original task. On the other hand, planning goals produce results that are used to guide solution of the original

problem but the results themselves are not part of the final solution. In Figure 7 the inherent goals are

"CODE LIST OF ONE ELEMENT' and "CHECK TWO"; all the rest are planning goals.

Composition collapses productions in one of two ways. One way is to eliminate the planning goals that

are intermediate between two inherent goals. This is what happens in Figure 7. In doing this it is compiling

out the planning process and simply leaving in the products of that planning. The second possibility is

illustrated in the case above. Here it skips over the setting of an intermediate inherent goal and so reduces the

number of inherent goals by one. In doing this it is basically creating macro operators somewhat similar to

STRIPS(Fikes & Nilsson, 1971) This learning scheme requires that the learner be able to identify what

subgoals were essential to the problem solution and which are only intermediate to the final solution.

It needs to be emphasized that neither proceduralization nor composition eliminate the original

production rules from which thcy wcre built. Rather the new compiled rules just serve as additional

supplemental rules to produce better performance in certain circumstances.

The effect of the knowledge compilation process is to create a set of productions that mirror the

J.

20

structure of LISP. They may explicitly involve LISP functions like CAR and COND or LISP programming

techniques like CDR-recursion (see forthcoming discussion of POWERSET). These productions will

preserve the inherent goals which are specific to LISP and will delete the planning goals involved in domain-

*. general processes like structural analogy. Thus representative productions become (see Anderson, Sauers,

and Farrell, 1982):

P1: IF the goal is to code the second member of a list
THEN use CADR and set a subgoal

to code the list.

P2: IF the goal is to obtain all the elements which have
a relation to any member of a list

THEN use MAPCONC and set as subgoals
1. To code a function that will return all the elements that have
a relation to the argument.
2. To code the ist.

The programming behavior we see in GRAPES once such productions are acquired, is somewhat like the

PECOS system of Barstow (1979). As discussed in Anderson, Sauers, and Farrell (1982), the main

programming activity for the more advanced student becomes algorithm design (see Kant and Newell, 1982)

in which the task is to convert the problem specification into a form that such rules can apply.

The expert programmer is advanced over the novice both in possession of rules for reformulating

problems and rules which associate large templates of code with specific problems. This is an idea that has

been suggested by a number of researchers (Kahney & Eisenstadt, 1982; Soloway, 1980;Rich & Shrobe,

1978). Many of these rules are exrlicitly learned either through formal courses or informal interaction with

other programmers. However, we suspect that many more are also compiled from experience. That is, the

programmer hits upon a problem, solves it with much search and effort, and compiles a rule that captures the

essence of the solution.

An Advanced Problem: POWERSET

After 30 hours of learning, subjects are beginning to solve relatively complex problems although they

are still novices. Consider a problem that was solved by all three of our subjects (for reports of other

advanced problems see Anderson, Farrell, and Sauers, 1982). We will describe W'C's solution to this problem

' as it was the most straightforward solution that we got from the subjects. In looking at this problem we will

-". *:: : : , :.: ..-. ...: S . .. : . : . .. :.

21

see a case where the student has learned all the basics and the main problem is putting these basics together.

As argued earlier, knowledge compilation creates a system of productions whose control strurcture mirrors the

structure of LISP. Although WC and other subjects possessed all of the necessary tools to solve the problems

they are given, their solutions are often riddled with working memory failures.

The problem is called POWERSET and Figure 8 illustrates how it was presented to the subjects. The

subject is told that a list of atoms encodes a set of elements and he is to calculate the powerset of that set-

that is, the list of all sublists of the original list, including the original list and NIL. Each subject was given an

example of the POWERSET of a three element list. The three subjects we observed in detail spent from

under two hours to over four hours solving this problem. In each case, they spent about one-third of their

time uncovering a key insight and the other two-thirds of their time working out the LISP code that would

capitalize on this insight.

Insert Figure 8 about here

We have also assigned this problem to a number of programming classes and gathered informal

problem solution reports. There are two types of solutions which subjects are prone to attempt and which

tend to distract them from the correct insight:

1. There is a strong tendency to try to implement the way they would solve the problem by hand.

For most subjects this hand solution is one in which they calculate the null list, then all the

singleton lists, then all the doubleton lists, etc. (i.e. NIL, the (A),(B),(C), and then (A B), (B C),

etc.)

2. Some subjects are distracted by the fact that certain sublists can be achieved quite easily by taking

CDR's. So, given the example (A B C), the sublists (B C), (C), and () can be gotten by taking

successive CDR's. This leaves the difficult task of calculating the non-CDR's.

However, almost all subjects finally come up with basically the same solution. The prototypical solution

to the problem is given in Table 3. The essential insight is illustrated in Figure 9. This involves noticing Lhe

22

relationship between the POWERSET on the full list and POWERSET on the tail (CDR) of the list. In

Figure 9 we denote by X the result of POWERSET on the full list and we denote by Y the result of

., POWERSET on the tail of the list. Subjects noted that Y provided half of the members they would need for

X. Second, they noted that the other half could be gotten from Y by adding A, the first member of the list L,

to each member of Y. Thus, X is formed from the lists Y and Z, where Z is formed from Y by adding the first

member of L to each member of Y.

Insert Table 3 and Figure 9 about here

The decision to consider the relationship between (POWERSET L) and (POWERSET (CDR L)) is not

just a stab in the dark. It is dictated by a recursive programming technique that the students were taught

called CDR-recursion. This technique involves assuming that the function will return the correct result for

the CDR of the list and trying to use this result to calculate the correct answer for the whole list.

POWERSET: Simulation of WC

WC took slightly under two hours to solve the problem, of which the first half hour was spent

formulating the critical insight. His schematic protocol is given in Table 4. He spent some time trying to

formulate the solution by taking successive CDR's before he abandoned this effort. The critical point in his

protocol came when he decided to examine the relationship between the powerset of the original list and its

CDR (lines 8 and 9 in Table 4).

Insert Table 4 about here

It would be interesting to try to simulate the process by which the subject comes to the insight about the

relationship between the powerset of the whole list and the powerset of the tail of the list-i.e., X = Y + Z11.

This would begin to get us into issues of algorithm design and that is beyond the scope of the current report.

However, we will focus on the programming that is involved in converting this insight into LISP code.

Figure 10 illustrates GRAPES' goal structure for this problem. GRAPES keys off the fact that the

argument is a list to attempt the CDR-recursion technique. This technique in\ olvcs two subgoals. One is to

• "" "-,'" " ," .'. . , - ". -".. -. ' . , '" ' . . . , _ .. : _ .

23

write the code for the recursive step and the other is to write the code for the terminating step which is when

the argument to POWERSET is the empty list, NIL. Under the recursive step, there are two subgoals. One is

to characterize the relationship between POWERSET of the full list and POWERSET of the tail of the list.

The other is to convert that characterization into LISP code. Not trying to simulate the insight X = Y + Z

we simply provide GRAPES with this information outright.

Insert Figure 10 about here

Both WC and GRAPES turn to coding Z which is formed from Y by adding A to each member of Z.

Since GRAPES knows no function that will calculate such a relation, it sets out to write a new function

ADDTO that will calculate this relation. WC however, in line 10 of Tible 4, first writes (UNION (CAR L)

(POWERSET (CDR L))). UNION is a function which combines two lists and avoids repeats. This clearly

will not give Z. It seems he has a vague specification in working memory of combining A with Y and UNION

matches this specification on the basis of it being a combining function. WC knows quite weli what UNION

does and as evidence of this, he corrects his code a couple of minutes later, and articulates what is wrong

without intervention of the experimenter.

POWERSET: Coding of ADDTO

Continuing with the depth-first goal expansion, both GRAPES and WC turn to writing the ADDTO

function before completing POWERSET. The goal structure for ADDTO is illustrated in Figure 11. The

function is written with the same cdr-recursion technique used in POWERSET. More advanced students

might recognize this as basically a simple iterative structure and solve it with a PROG or MAP, but we are

simulating WC at the point where he has not been taught about PROG's or MAP's and only knows about

recursion within LISP and not iteration.

Insert Figure 11 about here

When WVC first turned to coding the recursive step he wrote (CONS (LIST A (C\R L))(,\DDTO A

(CDR L))). This differs from the correct code in that the function LIST is used rader than CONS. Rather

. 2 . . ."

b-7

24

than combining A and (B C) to get (A B C), this will combine them to get (A (B C)). Once again our subject

confuses two similar functions; in this case LIST, which makes its arguments elements of a list, is confused

with CONS, which inserts its first argument into the list which is its second argument. This is all the more

interesting because this line of code also contains a correct use of CONS. It needs to be stressed that WC

knows quite well the distinction between CONS and LIST.

Then WC turned to writing the appropriate code for the terminating condition - i.e., when ADDTO is

called with arguments A and NIL. His first thought was that he should add A to this empty list and return

(A). That is, he had lost sight of the fact that the second argument to ADDTO is a list of lists and he should

add A to each sublist. This is another example of the subject losing track of what it is that he had intended to

do. The subject discovered the problem with this code by mental simulation and put in the correct

terminating value, namely, NIL.

At this point, the buggy definition of ADDTO was typed into the terminal and tried it out on some

sample problems. By tracing the function, he spotted and diagnosed the problem caused by his use of LIST

rather than CONS. He changed this and the function ran correctly. WC correcttl '. is probi,4, • vithout

instruction from the experimenter and without looking up CONS or LIST in his text.

POWERSET: Return to Main Function

Having completed ADDTO, he then returned to writing POWERSET. His first remark in line 18

indicates that he had completely forgotten the series of goalsthat led to ADDTO. He had to re-read the code

he had written to reconstruct his goals.

After he reconstructed his plan for POWERSET, WC turned to coding the terminating condition. His

first inclination was to return NIL as the value when POWERSET was called with the argument NIL. This

was the only place that the experimenter intervened with some suggestions. He pointed out that the

POWERSET is defined as the set of all subsets of a set Any set is considered a subset of itself and therefore

the set itself should be in the powcrset. The experimenter explained that among the elements of the powerset

of the empty set should be the empty set itself. From this explanation, WC inferred that the result for

25

POWERSET of NIL should be (NIL) rather than NIL. WC wrote (LIST NIL) but commented that he really

did not understand the explanation.

Then the function was typed into the terminal and WC watched it run with a trace on POWERSET.

When he saw POWERSET return (NIL) for the value of NIL and when he saw how this result was used by

higher levels of POWERSET, he remarked that he now understood why (NIL) was the right value for the

terminating condition. He still did not understand the experimenter's logical argument but he had an

understanding of why the result was essential to the correct working of the function.

There is a close correspondence between WC and GRAPES in the overall flow of control among goals

created by the decomposition strategy. However, there are frequent failures of memory on WC's part which

are not part of the simulation. He loses track of both partial products calculated in the course of planning a

function and incorrectly retrieves functions from memory. We have observed a similar high frequency of

errors in all our novice subjects. Such errors are less frequent with advanced LISP programmers when they

work on problems like POWERSET. Also, errors like the LIST-CONS confusion are almost non-existent

when subjects are asked to execute a command at the top-level of LISP. They only appear embedded in the

context of a problem with considerable workin& memory load. (A recent experiment conducted on a class of

60 novice programmers has confirmed that LIST-CONS confusions are more common when the function use

is embedded within the other functions (See Anderson, 1983b)).

Analysis of Retrieval Failures

Working memory failures are the cause of certain problems in the protocol like forgetting why ADDTO

was written. We think working memory failures are also responsible for the incorrect retrievals of functions

like UNION and LIST.

The following is our analysis of the LIST-CONS confusion. It is similar to what Norman (1981) called a

description error. We assume that the subject represents as his goal

1. To create a LIST L

2. where the first clement of L is A

" .% - - -. .- , -. -- - - - - - - -.--

All 26

3. and where the rest of the list contains the elements of B.

This matches the specification of CONS. On the other hand, if the third clause above had contains the

elements of replaced by simply contains, then it would match the specifications of LIST. If we assume that

the relation contains is simpler than contains the elements of and involves a subset of its semantic features, we

would predict that subjects would tend to lose the distinguishing features under heavy memory load and

retrieve LIST instead of CONS. Also, this analysis would predict that CONS should not be intruded instead

of LIST. This asymmetry is clearly the case in our protocols. The asymmetry has been shown to be

statistically reliable in large-scale class experiments as well.12 This analysis is also consistent with a different

CONS error that we saw in the SS protocol involving ONETWO.

The basic analysis of working memory errors being offered here is one in which the initial

representation is fragmented into a simpler representation. This is similar to the fragmentation forgetting

theory of Jones (1976). As the above analysis of the LIST-CONS confusion illustrates, the result of such

fragmentation depends critically on one's representation of the initial knowledge structure. Thus, one can use

the nature of these working memory errors to make inferences about the knowledge representation such as

the above analysis of the difference between CONS and LIST.

General Conclusions

While we do not have a complete theory of the behavior that occurs in the first 30 hours of

programming, we have gained some interesting insights. The first has to do with the basis for the

programming skill. Initially, the behavior is guided heavily by structural analogy in which the subject uses the

structure of definitions and examples to guide the programming. Later productions are compiled which

directly reflect the structure of the domain. We discussed how operators become compiled to reflect the

logical structure of the basic LISP functions. In addition, the subject learns various techniques for

transforming problems into formulations that can be encoded. For instance, WC's use of the CDR-recursion

technique was critical to his solution of the POWERSET problem.

Second, whether the subject is using structural analogy or using domain-specific operators, the structure

of the solution tends to be hierarchical, top-down, and depth first. This is strmg support for the archizcctural

27

principle of goal-structured productions in the design of ACT*. It is also consistent with the view of problem-

solving developed in Sacerdoti (1977).

Third, we have identified the learning mechanism of knowledge compilation as critical to the transitions

underlying the learning process. We showed that GRAPES' compilation applied to the solution of one

problem produced the improvement observed in its solution to the next problem. One of compilations'

striking features is that it appears to occur so rapidly. We saw two examples where subjects learned from

single problem-solving episodes. Such rapid compilation has also been observed in our analysis of geometry

problem-solving(Anderson, 1982).13 Finally, we think working-memory limitations become increasingly

important as the novice learns the basics of LISP. In the terms of Norman and Bobrow (1975) the novices

initial problem-solving is data-limited, but it rapidly becomes resource-limited and one important resource'is

working memory. Anderson (1982) argued that the major factor limiting rate of learning is working memory

capacity. Elsewhere (Anderson, 1983b) it has been argued that working memory actually increases in its

capacity to hold information about the domain, but there is nothing in our data on LISP to distinguish this

hypothesis from the idea that subjects just develop more efficient coding schemes (e.g., chunking). For other

domains, Chase and Ericsson (1983) provide fairly convincing arguments for increased working memory

capacity.

By the way of summary, the following is the general characterization that we would ike to give of

learning to program in LISP. The students start out with various templates and examples and a set of facts

that guide analogical use of these templates. With experience, analogy drops out and operators specific to

LISP appear. Further improvement in LISP is strongly controlled by working memory capacity.

. . .°

28 -4

References

Anderson, J.R. Languaee. Mcmorv and Thought. Hillsdale, NJ: Erlbaum, 1976.

Anderson, J.R. Acquisition of cognitive skill, Psvchploical Review, 1982, 89, 369-406.

Anderson, J.R. The Architecture pfCognition, Harvard University Press, 1983.

°S

- Anderson, J.R. Learning to Program. In the Proceedings of the Eighth International Joint Conference on

Artificial Intelligence, 1983b.

Anderson, J.R., Farrell, R., & Sauers, R. Learning I Plan in LISP, ONR Technical Report, ONR-82-2,

Carnegie-Mellon University, 1982..

Barstow, D.R. An experiment on knowledge-based automatic programming, Artificial Intelligence, 1979, 12

73-119.

Bott, R.A. A study of complex learning, theory, and methodologies. Unpublished doctoral dissertation.

University of California, San Diego, 1978.

Brooks, R.E. A model of human cognitive behavior in writing code for computer programs. Unpublished

doctoral dissertation, Carnegie-Mellon University, 1975.

Brown, J.S. & Van Lehn, K. Repair theory: A generative theory of bugs in procedural skills. Cognitive

Science 1980, 4, 379-426.

Card.S.K., Moran, T.P. & Newell, A. The Psychology of Human-Computer Interaction. Hillsdale, N.J.:

Erlbaum, 1983.

Chase, W. G. and Ericsson, K. A. Skilled memory. In J.R. Anderson (Ed) Coniti~e Skills and Their

Acquisition. Hillsdale, NJ: Erlbaum, 1981.

. .

*... •••. . . ,,.

29

Chomsky, N. Rules and representations. Behavioral and Brain Sciences, 1980, ,, 1-61.

Fikes, R.E. & Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving.

Artificial Intelligence, 1971, 2, 189-208.

Jeffries, R., Turner, A.A., Poison, P.G., & Atwood, M.E. The processes involved in designing software. In

J.R. Anderson (Ed.), C02nitive Skills and Their Acquisition. Hillsdale, NJ: Erlbaum, 1981.

Jones, G.V. A fragmentation hypothesis of memory: Cued recall of pictures and sequential position. Journal

f Ext)erimental Psvchology: General, 1976, I1 277-293.

Kant. E. and Newell, A. Problem solving techniques for the design of algorithms. In the Proceedings of the

Symposium on the empirical foundations of information and software science. Atlanta, GA,

November, 1982.

Kahney, H. & Eisenstadt, M. Programmers' mental models of their programming tasks: The interaction of

real-word knowledge and programming knowledge. Proceedins of the Fourth Annual Conference

Qf the Cognitive Science Society. 1982.

Neves, D.M. & Anderson, J.R. Knowledge Compilation: Mechanism for the automatization of cognitive

skill. In J.R. Anderson (Ed.), Cognitive Skills and their Acquisition. Hillsdale, N.J.: Lawrence

Erlbaum Associates, 1981.

Newell, A. Production Systems: Models of control structures. In W.G. Chase (Ed.), Visual Information

Processine. New York: Academic Press, 1973.

Norman, D.A. Categorization of action slips. Psvcholoical Review, 1981, U, 1-15.

Norman, D.A. & Bobrow. D.G. On data-limited and resource-limited processes. Conitive Psychnlo2y, 1975,

2, 44-64.

r rr r., -~ -~ wt - ww- . . - - :I

30

Rich, C. & Shrobc, H. Initial report on a LISP programmers' apprcntic,.. IEEE Trans. Soft. Ene., SE-4:6,

1978, 456-466.

Rumeihart, D.E. & Norman, D.A. Analogical processes in learning. In J.R. Anderson (Ed.), Cognitive Skills

and Their Acouisition. Hillsdale, N.J.: Erlbaum, 1981.

Saccrdoti, E.D. A structure for vlans and behavior. New York: Elsc\,icr, North Holland, 1977.

Sauers R., & Farrell, R. GRAPES Ujser's Manual. Technical Report ONR-82-3.

Siklossy. L. Let's Tallk LISP. Englewood Cliffs, NJ: Prentice-Hall, 1976.

*Soloway, E.M. From problems to programs via plans: The context and structure of knowledge for

introductory LISP programming. Coins Technical Report 80-19, University of Massachusetts at

Amherst, 1980.

Winston, P.H. Artificial Intclliiecnce. Reading, MA: Addison-Wesley, 1977.

Winston, P.H. & Horn, B.K.P. LISP. Reading. MA: Addison-Wesley, 1981.

I

31

Table 1
Schematic Protocol for BR
Writing FIRST and SECOND

1. Subject reviews template for function definition.

2. Subject reads problem.

3. Subject writes out '(DEFUN FIRST.

4. Subject is confused by "parameters" in the definition template.

5. Subject reviews F-to-C and notes TEMP is the parameter.

6. Subject reviews the parameter EXCHANGE and notes PAIR is the parameter.

7. Subject decides LIST1 is the parameter for FIRST and writes (LISTI).

8. Subject looks at INCREASE.

9. Subject decides to use CAR.

10. Subject looks at EXCHANGE.

11. Subject writes (CAR (LIST1)).

12. Subject balances parenthesis. The function is:
(DEFUN FIRST (LIST1)

(CAR (LIST1))).

13. Subject tries (FIRST '(B R)).

14. Subject reads error message "Error: Eval: undefined function LIST1".

15. Subject tries to insert a quote to prevent LIST1 from being treated as a function. The new
definition is:

(DEFUN FIRST (LISTI)
(CAR '(LIST1))).

16. Subject tries (FIRST '(B R)) again and reads the answer LIST1.

17. Subject claims not to know what to do. Tutor intercedes with a top-level example. She types
(SETQ LIST1 '(B R)) and asks subject to get the CAR of(B R) using LIST1.

IS. Subject writes (CAR LIST1).

19. Subject notes difference between Mhat she just wrote and what she Awrote in the function
definition (CAR (LISTI)). Subject decides to replace de code in the function definition by what
she has just written.

= % o .. °,° -= % m=
'

.- %.%--* ~"- ,, -- - - - , , , ' i .-".

32

20. Subject decides she does not need a SETQ in the function definition. Subjects definition now is:

(DEFUN FIRST (LIST1)
(CAR LISTI)).

21. Function FIRST works.

22. Subject reads specification of function SECOND.

23. Subject writes (DEFUN SECOND (LIST1).

24. Subject decides CDR will take her to the second element and CAR will extract it.

25. Subject reviews a previous top-level example, (CAR (CDR '(A B C))).

26. Subject finishes function definition which is
(DEFUN SECOND (LIST1)

(CAR (CDR LIST1))).

27. Subject tests out definition on an example and it works.

.5.,

p- .-..-o..-

33

Table 2
Schematic Protocol for SS Solving ONETWO

1. Tutor suggests writing a function ONETWO that returns a list of the first two elements of the
input lists.

2. Subject reviews all of the functions that she has learned and comments that CONS seems that it
might be useful.

3. Subject is stuck.

4. Tutor intervenes to suggest writing an easier function, ADDTWO, that takes two arguments and
makes a list out of these.

5. Subject comments that this is like CONS and reviews definition of CONS.

6. Subject considers a concrete example, (ADDTWO '(A B) '(C D)) = ((A B)(C D)). She considers
whether there is some way of converting (A B) and (C D) into ((A B)(C D)).

7. Subject suggests trying (CONS '(A B) '(C D)) but notes that this will produce ((A B) C D).

8. Subject changes code to (CONS '(A B) '((C D))).

9. Subject starts to write function definition - (DEFUN ADDTWO (ONE TWO).

10. Subject first writes (CONS ONE TWO) but then changes this to (CONS ONE (TWO)). The
definition now is

(DEFUN ADDTWO (ONE TWO)
(CONS ONE (TWO))).

11. Subject tries function definition with arguments (A B) and (C D). She receives the error message
"WO undefined function object".

12. Subject corrects by quoting. Function definition now is

(DEFUN ADDTVO (ONE TWO)
(CONS ONE '(TWO))).

13. Subject tries new definition with argument (A B) and (C D). The result is ((A B) TWO).

14. The tutor tries to explain evaluation but has no success in getting her to correct the code.

15. The tutor suggests a subproblem of getting a list containing the second argument.

16. Subject suggests using CONS on the argument and NIL.

17. Function definition now is

(DEFUN ADIDTWO (ONE TWO)
(CONS ONE (CONS TWO NIL))).

. . . = .. . -. -'. .. ."" , • - '- .- i- - .". ". - -".".- . ." ' .~. .

34

18. Subject tries function definition out on (A B) and (C D) and the result is ((A B) (C D)) which is

what is wanted.

19. Subject returns to the goal of writing ONETWO.

20. Subject writes (DEFUN ONETWO (LIS) (CONS (FIRST LIS).

21. Subject interrupts function definition to check what FIRST does.

22. Subject completes code. The function definition is

(DEFUN ONETWO (LIS)
(CONS (FIRST LIS) (CONS (SECOND LIS) NIL))).

23. Subject tries definition with argument (A B C) and it returns the answer (A B) which is correct.

24. Tutor asks her to redefine ONETWO using ADDTWO.

25. Subject writes
(DEFUN ONETWO (LIS)

(ADDTWVO (FIRST LIS) (SECOND LIS))).

26. Subject tries definition with argument (A B C) and it returns the correct answer (A B).

:7'

*t ~.a ~ . * '.*..*.

a

35

Table 3
Prototypical Solution to POWERSET

(DEFUN POWERSET (L)
(COND ((NULL L) (LIST N[L)

(T (APPEND (POWERSET (CDR L)
-. (ADDTO (CAR L) (POWERSET (CDR L)))))))

(DEFUN ADDTO (A Y)
(COND ((NULL Y) NIL)

(T (CONS (CONS A (CAR Y))
(ADDTO A (CDR Y))))))

36

Table 4

Schematic Protocol of WC on POWERSET

1. The experimenter explains the problem.

2. The subject recognizes that there are 2' sets in the solution where n is the length of the list.

3. The subject thinks about "taking the first element off of the list and calling this function on the
rest of the list" because that is "the general thing I have been doing lately with recursion."

4. Subject switches attention to calculating all the cdrs of the list.

5. Subject now suggests a loop in which he successively takes all the powersets of successive sublists

of the original list- "For every list I pull off an element and do powerset of the cdr."

6. Experimenter suggests the method will not work.

7. Subject focuses on powerset of (A B C D) and decides his method would "miss the sets with A in
it'"

8. Subject figures out the powerset of (B C D) and notes "All that I am missing is the union of A
with all these things."

9. Subject states his plan "I have the powerset of(B C D) and I want to UNION that with something
else which is A added to the powerset."

10. Subject writes

(UNION (POWERSET (CDR X))
(UNION (CAR X) (POWERSET (CDR X)))).

11. Subject decides the embedded UNION will not work and decides to write a helping function

called ADDTO with arguments A and L.

12. Subject decides he will add A to each member of L by CONS.

13. Subject decides when L is NIL he will add A to NIL to get (A). Then he changes his mind and
decides NIL is the correct answer in this case.

14. Subject writes
(DEFUN ADDTO (X L)

(COND ((NOT L) NIL)
(T (CONS (LIST X (CAR L))

(ADDTO X (CDR L)))))).

15. Subject tries function (ADDTO 'A '((B C) ((D) (A B C D E)))) and traces.

16. Inspecting trace he decides he should replace LIST by CONS.

17. Corrected function runs correctly.

L.,

37

18. Subject comments "Now I have forgotten where I was in this thing." He reviews what he had
written about POWERSEr.

19. Subject writes
(DEFUN POWERSET (L)

(COND ((NOT L)
(T (UNION (POWERSET (CDR L))

(ADDTO (CAR L) (POWERSET (CDR L)))))).

20. Turns to case when L is NIL and comments "I think I want to return NIL."

21. Types in (POWERSET '(A B)) and traces. He focuses on why POWERSET of(B) did not work.

22. Subject decides that problem is in ADDTO and he should correct it so ADDTO (B NIL) = (B).

23. Tutor tells subject to work on POWERSET and explains that the POWERSET of the empty set is
a set tha. contains the empty set.

24. Subject corrects POWERSET so it now reads

(DEFUN POWERSET (L)
(COND ((NOT L) (LIST NIL))

(T (UNION (POWERSET (CDR L))
(ADDTO (CAR L) (POWERSET (CDR L))))))).

but comments he does not understand the terminating condition.

25. The subject tries the function in an example with a trace.

26. The subject comments on the trace "Oh, I think I understand it now. It was returning NIL rather
than a list with NIL in it...Well I think I understand why Lbis didn't work that time. I still don't
understand the way yu think about it. But I think the way I think about it is OK too."

38

Figure Captions

Figure 1 A representation of the goal structure in subject BR's solution to the problem of writing the

function FIRST. The boxes represent goals and the arrows indicate that a production has

decomposed the goal above into the subgoals below. Checks indicate successful goals and

X's indicate failed goals. The dotted lines indicate parts of the goal tree combined in

composition- see text for discussion.

Figure 2 The goal structure at the beginning of the ADDTWO protocol where the subject makes up

an example.

Figure 3 The goal structure for the portion of the protocol where the subject decides how to create a

top-level function call that will be analogous to her desired program. The protocol starts

with the goal, CODE EXAMPLE, and ends with successful mental simulation of CONS in

* order to check the code.

Figure 4 The goal structure governing the initial coding of ADDTWO. This starts at the goal, MAP

TO ABSTRACT, and involves mapping the goal structure already built under CODE

EXAMPLE to the definition.

Figure 5 The goal structure governing the testing and repair of the ADDTWO function. The

structure under CHECK CODE is being generated to repair the code generated initially

under MAP TO ABSTRACT.

Figure 6 The goal structure governing the episode in ADDTWO where the subject decides how to

put an element into a list.

Figure 7 The goal structure governing the coding of ONETWO after the successful coding of

ADDTWO.

Figure 8 A specification of the POWERSET problem as presented to subjects.

4

°4 " -" % 1 ' -% ' . - o ' . ° . . . '

39

Figure 9 A representation of the essential insight which underlies solution of the POWERSET

problem.

Figure 10 A representation of the hierarchical goal structure controlling GRAPES' solution of the

POWERSET problem.

Figure 11 A representation of the hierarchical goal structure controlling GRAPES' solution of the

ADDTO problem. This structure is a substructure of the goal structure in Figure 11.

WRITE
-- FUNCTION- -j

7 MAP

/ EU V/FIS
ANALGY AALOG

BEWEIEWE

TEMPATEREATINATE

(LIST 1) /CODE
ARGUMENT

' ANALOGY- '(LISTI1)

TOP-LEVEL CD

COMXAMLLE

(LIST 1)

NX

,.........

WRITE
ADD TWO

CODE a CHECK

CODE CHECK

EXAMPE EXMPLE ODE ABSTRACT

EXAMINE EXAMINE EXAMINE'
ARGI ~ARG2RSL

(A B) (C D) ((A B) (CD))

-ii-

0 ~zm

wi < L0 w

w 0~ < <

Z z

0 Ld X 5
0 w CL%. -(E ®-a

0 L0

0~ _)

_0 C Z

o~~o- LzLLAJ
ox

a- LLLL DV 4

L r)c

LL.

-. *..<

zw o _

(I)

wL -JL L

21, M

CC)

1 0z

0zz

Q wu)

0 QZ

Cf)J LLf) (7

M U f) zm

~LU

a_ L

ODECCHECKCHEC
CCOD

ADDTWV "TWO

MAPTOCOMPARE UNDEFINED
ABSTRACT "'RESULTS JFUNCTION

DEFAULTOBJECT"
FUNCTION GIVES ERROR

DEFAULT QOTE STOPS TRY WRITTEN FUNCTION
* EVALUATION

(APB ((C D))P (T WO) COMPARE(AB)((D)V, ((A B)(C D))
MAP FIND MAP FIND ((A8) TWO)

FUNCTION GIVES
WRONG RESULT

[CHECK CHECK FIX CHECK
ONE TWO1 BUG CODE V~

V VLOCALIZE TRY WRITTEN
PROBLEM FUNCTION

REDO COMPARE
4V ((A B) (CD))y

((A B) (C D))

-J 0 0 C)5
0. H 4LL LL

x < ;lo
w mozz
I I

W.-6
w

z L
0 0iLL

)w 0 -'ipN

C/)W j U-

0-iz H)L I .i3

LU OLWC z

00 -j00

HZM

O~1 Q0 0U)L

LU0 LLLL

0 z 4

- - - - -

SOLVE SIMPLER PROBLEM

ADDTWO O NRTW

COE a CHECK

CODE CHECK
ONETO VCODEV
USE CONS TO ADD TRY WRITTEN
iST ELEMENT (ONETWO'(AB C))

F UN CT ION

CHECKCHECKCOMPARE
FIRS (AB8) V
USEFISTUSE CONS TO (A B)

fCHECK C HECKCHK
(LIS 'I ELEMENTNNI

USE SECOND

LISI

om%

0-

......

L= (A B C)

X= (POWERSET L) Y (POWERSET (CDR L))

-((A B C) -((B C)
(A B) (B)
(AC) (C)
(A) 0)
(B C)

(B)

(C)
())

X= Y+Z WHERE Z= ((A B C)
(AB)
(A C)
(A))

Z IS FORMED FROM Y BY ADDING A TO EACH
MEMBER OF Y.

i°

z

z
iw

H> -
-

w i

0 0

zz

W - X, wD
wA 0 I

o cZ) o--w U C
4 L)

oj z C -
0 H c

ww'

o) wCz z

w 0 LL, <

K0 > . (IL-Hz
U) 4 0.i

4r.) U Z Y L

w

I-- >

ZZ

HO 0 L
00

w O

OH 0

0 W <

0) 0 0A

0 cn MI H)Di

0 U)zw H 0 0
0 H U) z

H 0 00

w ow LL 0 H -L

LL-0 D

u F-0

WC/ 0

ZOOU
0 ~~ 0H N

QH PU)

crLLWZ0 W

. -.-- = . -' .- - - - . -. . . _-.-- .,.- °-. ,- , ° -_" • . . - r. i ; :.' r r r. -° • . " - . . -L ;

b...

40

Appendix A

R: This is the 6h session and this is February 8th. And we start by doing some problems. Do you want

to review?

B: Ycs, let me look through what we've done. Ok, we did setting functions, setting them up. Ok, you

type DEFUN and then the function name, and then what the parameters will be and then the process. Ok,

I'm just looking over the example for the temperature [?]...Then to exchange the lists. I think ! know these.

We'll see.

R: Ok, for the first one, why don't you read the problem, and then we'll do a slightly different--a subset

of the first problem.

B: [B reads the problem 3-1 on page 37.]

R: Why don't we just define FIRST.

B: Ok, we start out by typing or writing DEFUN, and then the name, which would be FIRST. [long

pa, _j I'm confused as to what the parameters would be.

R: You just have no ideas or you're choosing between several possibilities?

B: I don't know what to call--what--let me look at this again.

R: Ok, you're looking at?

B: At the temperature one. Ok, "when F-TO-C is used, it appears as the first element in a two element

list. The second element is F-TO-C's argument. After the argument is evaluated, it becomes the temporary

value of the functioi parameter. In this case, TEMP is the parameter, and it is gi\cn the value of the

argument while F-TO-C is being evaluated." [From page 34.] Ok. that's no help. Ok. now I'm looking at the

one about the pairs. [from problem 3-1] "Define ncv functions FIRST, REST, and INSERT that do the same

things." Ok. in this they want [?]

41

R: But this is ours.

B: [from page 35] "This new function exchanges the first and second elements of a two-element liSt."

Ok, so the function is called EXCHANGE. The parameter is PAIR, meaning two c!ements in the list. Ok, it

makes a list out of those two [?]. Ok, DEFUN FIRST is what we want to call it, right?

R: Maybe I'll ask you, how many parameters do you think you'll need?

B: Just one, the first element of the list.

R: That's what the parameter is?

B: Or the list, I'm sorry.

R: Ok, the list. And what is the first element of the list--what relationship does that have to the

function?

B: That's what you want to end up with.

R: Ok, thats called e value, the answer--what you end up with--in LISP is generally called the value.

B: Ok, so the parameter would be the list?

R: Yes.

B: Ok, so you type LIST [B has written (DEFUN FIRST (LIST)

R: Ok, well let me tell you something right now. That's a perfectly legitima.e thing to do--to call a

parameter 'LIST'--but because it has the same name as a functin, it can make certain types of errors-- you'll

never catch your error in a year because LISP \%ill keep trying to rnie a list out of things, and so it's

probably--LIS or LISI or something that's going to be a better name to call just to keep .oursclf from having

con- fusion. But if)ou did e\cry thing right, it \kould be perfectly lcgitimate.

-° - - - --,

42

B: Maybe I could just call it LIST1.

R: Yes, that shouldn't cause anything, so L-I-S-T-1.

B: Ok.

R: Now where are you looking?

B: I was looking back over here.

R: Ok, the example INCREASE.

B: Ok, we want it to take the first element, We want it to do the same thing as CAR but it's going to be

called something different. Can you use the function CAR? I'm not supposed to ask questions. Ok. Uh, ok,

let me try this. Uh, let me look at this one again.

R: Ok, the EXCHANGE example.

B: Could it just be CAR and then LISTL?

R: We can try that.

B: Ok, we have the function itself, what it's going to b.e called, the parameter, what it's going to do. [B

balances parentheses.]

R: Maybe we should try typing that in.

B: But I'm--there's nothing specific here so it wouldn't--I don't know...
7I

R: I'm not--can you try and express it...

B: Ok. back here it just is the general definition of the function and it should return FIRST. I think.

And then if wC used a concrete example...

43

R: Why don't you right now give me an example--a concrete example e might type in after the

function.

B: Ok, [B writes (FIRST (B R))] And it should return B.

[R types in the function definition: (DEFUN FIRST (LISTI) (CAR (LIST1))

B: Three closed parens.

R: Oh, sorry. [R adds a closed parcn at the end.] And it says FIRST. Ok, now we're going to try

FIRST of B R [(FIRST (B R))J ERROR: EVAL: undefined function B.

B: Ah, it should have a quote.

R: Ok, quote before the list. All right, FIRST QUOTE B R. [R types (FIRST '(B R)).] Ok, ERROR:

EVAL: undefined function LISTL.

B: Maybe there should be a quote up here.

R: Ok, do you want to tr, that? That's now between the CAR and LIST1 is where you want to put the

quote. Uh, maybe I'd like to ask you to tell me a little bit more about why you chose that.

B: Let me think about where the [?J. When I had just this without the quote, it saw B as just a function

and this as its argument. [?] So then I put a quote here, and so that--and then it said that LISTI wasn't

recognized, right?

R: It said undefined function LISTI. LIST1 wasn't recognized as a function.

B: Uh, do you want to know Ahy it doesn't?

R: Well, no. not nccessarily. I want to know why you decided thdat quote wkould solve the problem.

o-.

44

B: Because a quote keeps whatever's after it from being looked at as a function.

R: All right, let's try seeing [?] quote. [R does some manipulations to make the change in the definition

of the function to: (DEFUN FIRST (LISTI) (CAR "(LIST1))).] Ok. now we go back to FIRST of B R...Ok, it

gave LISTI as its answer.

B: It gave LISTI as its answer. Hmm...interesting.

R: I presume that is not what .you thought the answer was going to be.

B: Ok, up here I have CAR of the QUOTE and then some list. Uh...[long pausci [?] the list..I don't

know what to do.

R: Ok, let me try I?] this way. Suppose we had typed in open paren CAR of QUOTE paren LISTI

closed paren closed paren [(CAR '(LIST1))], what would you expect to get as an answer to that?

B" Paten LIST&.

R: Should we try that? [R types it in.]

B: Or else just LIST1.

R: Ok, which one do you want to predict?

B: Uh, probably without the parentheses.

R: Ok, do you want to check it and [?]

B: Ok, I'm looking at page 23. Ok if you take the CAR of L you get A. Take the CAR of QUOTE L--

QUOTE L means an L [?] I guess it would still be in parentheses--the list [?]

R: Ok, but what's the ansAcr to this minor function [?]--what the CAR of QUOTE open paren LIST1

45

closed paren?

B: For this--I'm trying to think if it would have the parentheses or not. I don't think so.

R: Ok, so you think it's just LISTI without tie parentheses. Ok, does that give you any better

understanding...

B: It has the parentheses or it doesn't?

R: It does not have parentheses.

B: So it actually returns LISTI. Ok, so here it returns LISTI. I don't--it's like it's not recognizing this

at all.

R: It's not recognizing B. Let's try [7] that table here. Now this is going to have to be a littl1e different

because of F-TO-C--this is Figure 3-1. page 35--you're going to have FIRST, and instead of TEMP you're

going to have--what's equivalent to what was TEMP in F-TO-C?

B: LIST1.

R: Ok, those are the only two things. Can we try doing the equivalent.

B: Ok, so you type in the function.

R: Ok, so you type in the function FIRST then B R.

B: Record current value of LISTI if any. There isn't.

R: There is none. Ok.

B: So then you set LISTI to B R. So LIST1 has the value B R. Use EVAL on budy of F-TO--FiRST.

R: Ok, now what would happen if we did EVAL on open paren CAR of QUOTE open paren LIST1

k ...

46

closed paren closed paren? What would you get as the answer?

B: LIST1 without the parentheses.

R: Ok, all right. And that's exactly what happened. There were two more steps: Restore TEMP's

v'alue and Return value found to EVAL. Ok, does that help you understand why you got the wrong answer.

It may not help you understand how you get the right answer, but does that help you understand why you got

the wrong answer?

B: Yes, I think so. I still don't know how to get the right answer.

R: Let's assume that I had said to you 'Ok, we had just done SETQ LISTI to QUOTE LIST B

R. [(SETQ LISTI '(B R))]. Now, how would you write the function to get the CAR of that, given that I just

set LISTi to...

B: You want me to do what?

R: To take the CAR.

B: Of this whole thing?

R: No, I want you to get the CAR of B R, given that it's been assigned to LISTI--that is, I don't want

you to do it directly using B R, I want you to do it using LISTI.

B: Ok, so you've--you've already--you've set LISTI equal to B R. Then it would be CAR...are we doing

this like--assuming this is what would be up here? You want to know how I would get...

R: No, we're just doing it totally independently. I'm just saying [?] Just like with an exercise before,

remember we had to get PEAR out of[?] Get B out of LISTI. Yes, it's equivalent to that one.

B: Ok. so...at this point, LISTI has the value B R.

i., .-..-..-....-.'.. -..,.:-.,,-, -'.-.'*- -...-. ,,. -.- - ,.. .. .-. -...

47

R: You wrote down CAR...

B: CAR LISTI, I guess. Wait. I'm looking back [?

R: Ok, you wrote CAR open paren LIST1 closed paren closed paren.

B: Ok, here we set L--we used quotes there, we didn't use QUOTE here.

R: That's because we did SETQ.

B: We set L to the list A B, and we've set the LISTI to the list A B--the list B R. Ok, then we did the

CAR of L there and they got A out. So I think that might work.

R: Do you see a difference between what you've written and what they've written?

B: Yes. I have parentheses.

R: Ok, do you think that will make a difference?

B: Yes, it would probably just bring back LIST1. So I would want it to be CAR LISTI. [(CAR LIST1)

R: Ok, let's try it. [R types in the SETQ function and the CAR function.] And you get B back. So does

thaL..now...

B: So this is the correct one to get B?

R: Ok, from--assuming that the list B R had been set to LIST1. Now does that give you any ideas of

how you might want to modify your definition of FIRST?

B: Ok, I was looking at this while you were typing.

R: Ok, you were looking at I?] F-TO-C.

48

B: F-TO-C, where they SETQ TEMP and they did something else with it.

R: You think that's going to help?

B: Maybe not.

R: If it is, that's what I want to know--why?

B: No, maybe not.

R: I didn't mean to imply [?]

B: No, actually what they're doing I guess is setting the temperature to the difference between the

tcmperature and 32, and that's not quite what we want to do. Ok, this was the way-- after we had set LIST1 to

B R, and then we did CAR of LIST1, we got B. If we had had just CAR and LIST1 up here...and then just

typed in FIRST and parentheses B R--I'm not sure if I need to use SETQ in the definition.

R: Ok, do you remember where the idea of doing the SETQ came from?

B: What do you mean? Where in the book?

R: In the book in the sense of we were talking about this figure, 3-1.

B: Oh, ok. So that's sort of inherent in the function.

R: Yes. [?]

B: Ok, so I don't have to do that. Ok, so let's try this. [B writes: (DEFUN FIRST (LISTI) (CAR

LIST1)). and R types it in to the computer.)

R: And now you want me to do FIRST of QUOTE B R.

B: Well, I didn't put a quote in.

.. :." " '-"o',""'.,',.." " "."... ...-..-........ " ".....".... . . . 'i :,,

49

R: Oh, you don't want to put a quote in?

B: I'm not sure, since you put it in.

R: I was just copying it from here. Which would you like to do? Ok, so you want to do it--do you want

to try it without the quote?

B: Without the quote, it would probably do the same thing as before.

R: Which was?

B: It would look at this as a function.

R: Oh, B [?

B: So it should have a quote.

R: Ok, and it comes back with B. Ok, do you want to try it on anything else?

B: No. Imean--I assume it's the same--any kind of list would do that.

R: Ok, let's do as a second thing, let's try to define a function called SECOND that--is it clear what

SECOND would do?

B: Yes. Ok, DEFUN SECOND, the parameter would be LIST1--can I still call it that?

R: Yes.

B: Ok, I'm just going to make up a list--assume you have the list X Y and Z-- And you want to get the

Y out.

R: What arc those funny marks bctwccn the letters?

50

B: Commas. They're not supposed to be there, right?

R: I just couldn't figure out what they were. Not in general.

B: Ok, and you want to get Y, so you'd want to take the CDR of this to end up with Y and Z, and then

take the CAR and end up with Y. So, you'd have CDR of the LIST1, and out here you'd have your CAR.

Ok, I want to look back to where we did multiple CDRs and CARS. Let's see...ok, I'm looking on page 20.

Ok, CAR CDR and then QUOTE and then a list. B is what's returned. [at the bottom of page 21.] Ok, that's

what I want it to do. [B starts reading the next-to-the-last paragraph on page 21.] Ok, I want it to do CDR.

So I think...l think I just want it like that. [the function is: (DEFUN SECOND (LIST1) (CAR (CDR

LIST1)))] I'll write an example.

[R has problems getting the computer to work properly.]

R: So, it looks like SECOND is okay. I won't bother to explain to you how I know.

i I

4 ': ,: ,4 ' .. ~ - .; .-.. ;. . - . - -. ,; . -. - . . ,; - -. : ,. , . -, . . - ,-. ,. .;- , , . , , , -

; 51 p

'This research is supported by contract N00014-81-C-0335 from the Office of Naval Research. We

would like to thank Robin Jeffries both for many hours of valuable discussions relevant to the research and

for her comments on the paper. We would also like to thank Lynne Rcdcr and Gordon Bower for their

valuable comments on the manuscript.

2All programs in LISP take the form of functions that calculate a particular input-out relation.

3Here and throughout the paper we will give English-like rendition of the production rules. A technical

specification of these rules (i.e., a computer listing) can be obtained by writing to us. Also available is a users'

manual (Sauers & Farrell. 1982) that describes the system.

4The LISP function CDR returns all of a list except its first member, i.e. (CDR '(A B C))=(B C).

51n LISP, functions can be directly typed into the monitor and directly applied or they can be part of

function definitions, in which case they are applied only when the function is evaluated.

6Many have commented that they felt it was unintuitive to claim that procedures could be created from

a single problem-solving episode. Their intuition is that it should take much longer to proceduralize

knowledge. Rather, they suspect thai the subject is using various declarative traces to guide the solution of

the second problem. There is no hard evidence in the protocols. on this matter. However, the one-trial

learning position is consistent with a frequent report students' give in solving a series of problems (e.g., in

calculus text). This is that they find the second problem much easier and they have no idea why. This lack of

introspective awareness of the cause of the improvement is to be predicted from the procedural position.

7This essentially involved breaking in on the simulation and changing working memory-i.e., we have

no real theory of why this working memory error occurred, only what its consequences were.

8Given the more advanced stage of SS, the function syntax, parenthesis balancing, etc. are all parts of

compiled productions-unlike the previous simulation of BR.

d ,, ' ,~ " , ' " , " , " .,. " , .""- • , ,". . ". - . - ".

.. , . .i ._ . ,- u. . -o - . . -.-- - . - - ° . o . .

52 0

9Note that she has made the same error as BR in placing an argumcnt in parentheses but for very

different reasons. SS follows the error message with the same repair as used by BR. Her comment at the

point of the error message is "Must have something to do with when we defined that and I put parentheses

around iwo. Cause there's no iwo in there, let's see...Maybe I should have...what would it do if I quoted that?"

10Because of GRAPES specificity conflict resolution principle, more specific rules, like MAP-FIND,

will apply before less specific, default rules like the rule applied here.

htAnd in fact, Peter Pirolli at Carnegie-Mellon University has written a GRAPES simulation of how this

insight is uncovered

12Unfortunately, this asymmetry is confounded with the fact that "LIST" is more mnemonic as a

function name than CONS. However, we have also done an experiment that reversed the function names and

still found the effect- i.e., now "CONS" is better than "LIST" (See Anderson, 1983b).

11Anderson (1982) argues for a process of tuning in addition to knowledge compilation. This is a

mechanism by which operators, once compiled, become more appropriate in their range of application. For

instance, there are many plac,s where CDR-recursion could be tried. On only some of these would it be

appropriate. We see very little of this tuning in our protocols, perhaps because we are only looking at the first

30 hours of learning.

'

. .*

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page

Navy Navy

1 Robert Ahlers 1 Dr. Mike Gaynor
Code N711 Navy Research Laboratory
Human Factors Laboratory Code 7510
NAVTRAEQUIPCEN Washington, DC 20375
Orlando, FL 32813

I LT Steven D. Harris, MSC, USN
I Dr. Meryl S. Baker RFD 1, Box 243
Navy Personnel R&D Center Riner, VA 24149
San Diego, CA 92152

1 Dr. Jim Hollan

1 Code N711 Code 14
Attn: Arthur S. Blaiwes Navy Personnel R & D Center
Naval Training Equipment Center San Diego, CA 92152
Orlando, FL 32813

1 Dr. Ed Hutchins
1 Liaison Scientist Navy Personnel R&D Center

Office of Naval Research San Diego, CA 92152
Branch Office, London

Box 39 1 Dr. Norman J. Kerr
FPO New York, NY 09510 Chief of Naval Technical Training

Naval Air Station Memphis (75)
1 Dr. Richard Cantone Millington, TN 31054
Navy Research Laboratory
Code 7510 1 Dr. Peter Kincaid
Washington, DC 20375 Training Analysis & Evaluation Group

Dept. of the Navy
1 Dr. Stanley Collyer Orlando, FL 32813
Office of Naval Technology
800 N. Quincy Street 1 Dr. James Lester
Arlington, VA 22217 ONR Detachment

495 Summer Street
I CDR Mike Curran Boston, MA 02210
Office of Naval Research
800 N. Quincy St. I Dr. William L. Maloy (02)
Code 270 Chief of Naval Education and Training
Arlington, VA 22217 Naval Air Station

Pensacola, FL 32508
1 Dr. Tom Duffy
Navy Personnel R&D Center 1 Dr. Joe McLachlan
San Diego, CA 92152 Navy Personnel R&D Center

San Diego, CA 92152
I DR. PAT FEDERICO

Code P13 I Dr William Montague
NPRDC NPRDC Code 13
San Diego, CA 92152 San Diego, CA 92152

1 Dr. Jude Franklin I Technical Director
Code 7510 Navy Personnel R&D Center
Navy Research Laboratory San Diego, CA 92152
Washington, DC 20375

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

.1

I

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 2

Navy Navy

I Office of Naval Research 1 Dr. Wallace Wulfeck, III
Code 433 Navy Personnel R&D Center
800 N. Quincy SStreet San Diego, CA 92152
Arlington, VA 22217

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

I Office of the Chief of Naval Operations
Research Development & Studies Branch
OP 115
Washington, DC 20350

1 LT Frank C. Petho, MSC, USN (Ph.D)
CNET (N-432)
NAS
Pensacola, FL 32508

1 Dr. Gil Ricard
Code N711
NTEC
Orlando, FL 32813

I Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-9871
Washington, DC 20350

1 Dr. Alfred F. Smode, Director
Training Analysis & Evaluation Group
Dept. of the Navy
Orlando, FIt 32313

I Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

I Dr. Frederick Steinheiser
CNO - OP115
Navy Annex
Arlington, VA 20370

I Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Mr John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

*4

:-I

- - . * - -. ~ .* . -4

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 3 S

Marine Corps Army

1 H. William Greenup I Technical Director
Education Advisor (E031) U. S. Army Research Institute for the
Education Center, MCDEC Behavioral and Social Sciences
Quantico, VA 22134 5001 Eisenhower AvenueI" Alexandria, VA 22333

I Special Assistant for Marine
• Corps Matters 1 Mr. James Baker

Code lOOM Army Research Institute
Office of Naval Research 5001 Eisenhower Avenue
800 N. Quincy St. Alexandria, VA 22333
Arlington, VA 22217

I Dr. Milton S. Katz

1 DR. A.L. SLAFKOSKY Training Technical Area
SCIENTIFIC ADVISOR (CODE RD-I) U.S. Army Research Institute

HQ, U.S. MARINE CORPS 5001 Eisenhower Avenue p
WASHINGTON, DC 20380 Alexandria, VA 22333

1 Dr. Marshall Narva

US Army Research Institute for the

Behavioral & Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

I Dr. Harold F. O'Neil, Jr.
Director, Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Commander, U.S. Army Research Institute
for the Behavioral & Social Sciences

ATTN: PERI-BR (Dr. Judith Orasanu)
5001 Eisenhower Avenue
Alexandria, VA 20333

I Joseph Psotka, Ph.D.
ATTN: PERI-IC
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

I Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue
Alexandria, VA 22333

I Dr. Robert Wisher
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

:I

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 4

Air Force Departme t of Defense

I Technical Documents Center 12 Defense Technical Information Center
Air Force Human Resources Laboratory Cameron Station, Bldg 5
WPAFB, OH 45433 Alexandria, VA 22314

Attn: TC
I U.S. Air Force Office of Scientific

Research 1 Military Assistant for Training and
Life Sciences Directorate, NL Personnel Technology
Bolling Air Force Base Office of the Under Secretary of Defens
Washington, DC 20332 for Research & Engineering

Room 3D129, The Pentagon
I Air University Library Washington, DC 20301
AUL/LSE 76/443
Maxwell AFB, AL 36112 1 Major Jack Thorpe

DARPA
1 Dr. Earl A. Alluisi 1400 Wilson Blvd.
HQ, AFHRL (AFSC) Arlington, VA 22209
Brooks AFB, TX 78235

I Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

1 3ryan Dallman
AFHRL/LRT
Lowry AFB, CO 80230

I Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

I Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR

Bolling AFB, DC 20332

I Dr. T. M. Longridge
AFHRL/OTE
Williams AFB, AZ 85224

I Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

1 Dr. Joseph Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

p

A..

4. * ,.* ** *.° .

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 5

Civilian Agencies Private Sector

1 Dr. Patricia A. Butler 1 Dr. Patricia Baggett
NIE-BRN Bldg, Stop # 7 Department of Psychology1200 19th St., NW University of Colorado

Washigton DC 0208Boulder, CO 80309

1 Dr. Susan Chipman 1 Mr. Avron Barr
Learning and Development Department of Computer Science
National Institute of Education Stanford University
1200 19th Street NW Stanford, CA 94305
Washington, DC 20208

1 Dr. John Black
1 Edward Esty Yale University
Department of Education, OERI Box 11A, Yale Station
MS 40 New Haven, CT 06520
1200 19th St., NW
Washington, DC 20208 1 Dr. John S. Brown

XEROX Palo Alto Research Center
I Dr. John Mays 3333 Coyote Road
National Institute of Education Palo Alto, CA 94304
1200 19th Street NW
Washington, DC 20208 1 Dr. Glenn Bryan

6208 Poe Road
1 Dr. Arthur Melmed Bethesda, MD 20817
724 Brown
U. S. Dept. of Education 1 Dr. Bruce Buchanan
Washington, DC 20208 Department of Computer Science

Stanford University
I Dr. Andrew R. Molnar Stanford, CA 94305
Office of Scientific and Engineering
Personnel and Education 1 Dr. Jaime Carbonell

National Science Foundation Carnegie-Mellon University
Washington, DC 20550 Department of Psychology

Pittsburgh, PA 15213
1 Chief, Psychological Reserch Branch
U. S. Coast Guard (G-P-1/2/TP42) I Dr. Pat Carpenter
Washington, DC 20593 Department of Psychology

Carnegie-Mellon University1 Dr. Frank Withrow Pittsburgh, PA 15213
U. S. Office of Education
400 Maryland Ave. SW 1 Dr. William Chase
Washington, DC 20202 Department of Psychology

Carnegie Mellon University
1 Dr. Joseph L. Young, Director Pittsburgh, PA 15213
Memory & Cognitive Processes
National Science Foundation 1 Dr. Micheline Chi
Washington, DC 20550 Learning R & D Center

University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

I Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94306

CHU/Anderson & Chase (NR 667-465) 26-Jul-8 3 Page 6

Private Sector Private Sector

I Dr. Michael Cole I Dr. Don Gentner
University of California Center for Human Information Processing
at San Diego University of California, San Diego P

Laboratory of Comparative La Jolla, CA 92093
Human Cognition - DOO3A
La Jolla, CA 92093 1 Dr. Dedre Gentner

Bolt Beranek & Newman
I Dr. Allan M. Collins 10 Moulton St.
Bolt Beranek & Newman, Inc. Cambridge, MA 02138
50 Moulton Street
Cambridge, MA 02138 1 Dr. Robert Glaser

Learning Research & Development Center
I Dr. Lynn A. Cooper University of Pittsburgh
LRDC 3939 O'Hara Street
University of Pittsburgh PITTSBURGH, PA 15260
3939 O'Hara Street
Pittsburgh, Pk 15213 1 Dr. Josph Goguen

SRI International •
I Dr. Paul Feltovich 333 Ravenswood Avenue
Department of Medical Education Menlo Park, CA 94025
Southern Illinois University
School of Medicine I Dr. Daniel Gopher
P.O. Box 3926 Department of Psychology

- Springfield, IL 62708 University of Illinois
Champaign, IL 61820

* 1 Professor Reuven Feuerstein
HWCRI Rehov Karmon 6 1 Dr. Bert Green
Bet Hakerem Johns Hopkins University
Jerusalem Department of Psychology
Israel Charles & 34th Street

Baltimore, MD 21218
1 Mr. Wallace Feurzeig

Department of Educational Technology I DR. JAMES G. GREENO
Bolt Beranek & Newman LRDC
10 Moulton St. UNIVERSITY OF PITTSBURGH
Cambridge, MA 02238 3939 O'HARA STREET

PITTSBURGH, PA 15213
1 Dr. Dexter Fletcher
WICAT Research Institute 1 Dr. Barbara Hayes-Roth

1875 S. State St. Department of Computer Science
Orem, UT 22333 Stanford University

Stanford, CA 95305
I Dr. John R. Frederiksen
Bolt Beranek & Newman 1 Dr. Frederick Hayes-Roth
50 Moulton Street Teknowledge
Cambridge, MA 02138 525 University Ave.

Palo Alto, CA 94301
1 Dr. Michael Genesereth
Department of Computer Science 1 Dr. Earl Hunt
Stanford University Dept. of Psychology
Stanford, CA 94305 University of Washington

Seattle, WA 98105

CHU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 7

Private Sector Private Sector

I Dr. Marcel Just 1 Dr. Marcia C. Linn
Department of Psychology Lawrence Hall of Science
Carnegie-Mellon University University of California
Pittsburgh, PA 15213 Berkeley, CA 94720

1 Dr. Scott Kelso 1 Dr. Jay McClelland
Haskins Laboratories, Inc Department of Psychology
270 Crown Street MIT
New Havei, CT 06510 Cambridge, MA 02139

I Dr. David Kieras I Dr. James R. Miller
Department of Psychology Computer*Thought Corporation
University of Arizona 1721 West Piano Highway
Tuscon, AZ 85721 Piano, TX 75075

I Dr. Walter Kintsch 1 Dr. Mark Miller
Department of Psychology Computer*Thought Corporation

* University of Colorado - 1721 West Plano Parkway
Boulder, CO 80302 Plano,. TX 75075

1 Dr. Stephen Kosslyn I Dr. Tom Moran
1236 William James Hall Xerox PARC

* 33 Kirkland St. 3333 Coyote Hill Road
. Cambridge, MA 02138 Palo Alto, CA 94304

1 Dr. Pat Langley I Dr. Allen Munro
The Robotics Institute Behavioral Technology Laboratories
Carnegie-Mellon University 1845 Elena Ave., Fourth Floor
Pittsburgh, PA 15213 Redondo Beach, CA 90277

I Dr. Jill Larkin 1 Dr. Donald A Norman
Department of Psychology Cognitive Science, C-015
Carnegie Mellon University Univ. of California, San Diego
Pittsburgh, Pk 15213 La Jolla, CA 92093

I I Dr. Alan Lesgold I Dr. Jesse Orlansky
' Learning R&D Center Institute for Defense Analyses

University of Pittsburgh 1801 N. Beauregard St.
3939 O'Hara Street Alexandria, VA 22311
Pittsburgh, PA 15260

I Prof. Seymour Papert
I Dr. Jim Levin 20C-109
University of California Massachusetts Institute of Technology
at San Diego Cambridge, MA 02139
Laboratory fof Comparative
Human Cognition - DOO3A I Dr. Nancy Pennington

La Jolla, CA 92093 University of Chicago 9
Graduate School of Business

I Dr. Michael Levine 1101 E. 58th St.
Department of Educational Psychology Chicago, IL 60637
210 Education Bldg.
University of Illinois
Champaign. IL 61801

p. 4

p *1

'I..

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page I

Private Sector Private Sector

1 DR. PETER POLSON 1 Dr. Walter Schneider
DEPT. OF PSYCHOLOGY Psychology Department
UNIVERSITY OF COLORADO 603 E. Daniel
BOULDER, CO 80309 Champaign, IL 61820

1 Dr. Fred Reif I Dr. Alan SchoenfeldPhysics Department Mathematics and EducationUniversity of California The University of Rochester
Berkeley, CA 94720 Rochester, NY 14627

I Dr. Lauren Resnick 1 Mr. Colin Sheppard
LRDC Applied Psychology UnitUniversity of Pittsburgh Admiralty Marine Technology Est.3939 O'Hara Street Teddington, Middlesex
Pittsburgh, PA 1521 United Kingdom

1 Mary S. Riley 1 Dr. H. Wallace Sinaiko
Program in Cognitive Science Program Director
Center for Human Information Processing Manpower Research and Advisory Services
University of California, San Diego Smithsonian Institution
La Jolla, CA 92093 801 North Pitt Street

Alexandria, VA 22314
1 Dr. Andrew M. Rose
American Institutes for Research I Dr. Edward E. Smith
1055 Thomas Jefferson St. NW Bolt Beranek & Newman, Inc.Washington, DC 20007 50 Moulton Street

Cambridge, MA 02138
I Dr. Ernst Z. Rothkopf

Bell Laboratories 1 Dr. Richard Snow
Murray Hill, NJ 07974 School of Education

Stanford UniversityI Dr. William B. Rouse Stanford, CA 94305
Georgia Institute of Technology
School of Industrial & Systems 1 Dr. Eliott Soloway
Engineering Yale University

Atlanta, GA 30332 Department of Computer Science
P.O. Box 2158I Dr. David Rumelhart New Haven, CT 06520

*Center for Human Information Processing
Univ. of California, San Diego 1 Dr. Kathryn T. Spoehr
La Jolla, CA 92093 Psychology Department

Brown UniversityI Dr. Michael J. Samet Providence, RI 02912
Perceptronics, Inc
6271 Variel Avenue I Dr. Robert Sternberg
Woodland Hills, CA 91364 Dept. of Psychology

Yale UniversityI Dr. Roger Schank Box 11A, Yale Station
Yale University New Haven, CT 06520
Department of Computer Science
P.O. Box 2158 1 Dr. Albert StevensNew Haven, CT 06520 Bolt Beranek & Newman, Inc.

10 Moulton St.
Cambridge, MA 02238

_1° """ ""- " " " " "" " " "

CMU/Anderson & Chase (NR 667-465) 26-Jul-83 Page 9

Private Sector

I David E. Stone, Ph.D.

Hazeltine Corporation

7680 Old Springhouse Road
McLean, Vk 22102

I DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

I Dr. Kikumi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61320

1 Dr. Perry W. Thorndyke
Perceptronics, Inc.
545 Middlefield Road, Suite 140
Menlo Park, CA 94025

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

I Dr. Kurt Van Lehn
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

1 Dr. Keith T. Wescourt
Perceptronics, Inc.
545 Middlefield Road, Suite 140
Menlo Park, CA 94025

1 Dr. Thomas Wickens
Perceptronics, Inc.
6271 Variel Ave.
Woodland Hills, CA 91364

I Dr. Mike Williams
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

b!I

